首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15339篇
  免费   2811篇
  国内免费   1824篇
化学   10974篇
晶体学   154篇
力学   1132篇
综合类   64篇
数学   1654篇
物理学   5996篇
  2024年   15篇
  2023年   339篇
  2022年   345篇
  2021年   484篇
  2020年   630篇
  2019年   585篇
  2018年   531篇
  2017年   483篇
  2016年   836篇
  2015年   728篇
  2014年   919篇
  2013年   1129篇
  2012年   1459篇
  2011年   1444篇
  2010年   982篇
  2009年   921篇
  2008年   1071篇
  2007年   944篇
  2006年   856篇
  2005年   762篇
  2004年   529篇
  2003年   430篇
  2002年   397篇
  2001年   334篇
  2000年   288篇
  1999年   306篇
  1998年   262篇
  1997年   232篇
  1996年   266篇
  1995年   266篇
  1994年   186篇
  1993年   147篇
  1992年   151篇
  1991年   145篇
  1990年   125篇
  1989年   101篇
  1988年   85篇
  1987年   67篇
  1986年   50篇
  1985年   41篇
  1984年   30篇
  1983年   25篇
  1982年   14篇
  1981年   16篇
  1980年   9篇
  1978年   2篇
  1972年   1篇
  1957年   6篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
61.
Gao  Peiyu  Min  Fuhong  Li  Chunbiao  Zhang  Lei 《Nonlinear dynamics》2021,106(3):2203-2228
Nonlinear Dynamics - In this paper, the current-controlled DC–DC buck converter from a new perspective are studied through the switching theory of flow, and the analytical conditions of the...  相似文献   
62.
63.
We report a spatially modulated polarimetry scheme by using a zero-order vortex half-wave retarder(ZVHR)and a spatial Fourier analysis method.A ZVHR is employed to analyze the input polarized light and convert it into a vectorial optical field,and an analyzer is set after the ZVHR to form an hourglass intensity pattern due to the spatial polarization modulation.Then,the input light’s Stokes parameters can be calculated by spatial Fourier analysis of the hourglass pattern with a single shot.The working principle of the polarimeter has been analyzed by the Stokes-Mueller formalism,and some quantitative measuring experiments of different polarization states have been demonstrated.The experimental results indicate that the proposed polarimeter is accurate,robust,and simple to use.  相似文献   
64.
Lipid metabolism has a significant function in the central nervous system and Alzheimer's disease (AD) is an age-related senile disease characterized by central nerve degeneration. The pathological development of AD is closely related to lipid metabolism disorders. To reveal the influence of Kai-Xin-San (KXS) on lipid metabolism in APP/PSI transgenic mice and potential therapeutic targets for treating AD, brain tissue samples were collected and analyzed by high-throughput lipidomics based on UPLC–Q/TOF-MS. The collected raw data were processed by multivariate data analysis to discover the potential biomarkers and lipid metabolic profiles. Compared with the control wild-type mouse group, nine potential lipid biomarkers were found in the AD model group, of which seven were up-regulated and two were down-regulated. Orally administrated KXS can reverse the changes in these potential biomarkers. Compared with the model group, a total of six differential metabolites showed a recovery trend and may be potential targets for KXS to treat AD. This study showed that high-throughput lipidomics can be used to discover the perturbed pathways and lipid biomarkers as potential targets to reveal the therapeutic effects of KXS.  相似文献   
65.
Poly(ethylene oxide)-b-polyhedral oligomeric silsesquioxane (PEO–POSS) mixed with lithium bis(trifluoromethanesulfonyl)imide salt is a nanostructured hybrid organic–inorganic block copolymer electrolyte that may enable lithium metal batteries. The synthesis and characteristics of three PEO–POSS block copolymer electrolytes which only differ by their POSS silica cage substituents (ethyl, isobutyl, and isooctyl) is reported. Changing the POSS monomer structure results in differences in both thermodynamics and ion transport. All three neat polymers exhibit lamellar morphologies. Adding salt results in the formation of a disordered window which closes and gives way to lamellae at higher salt concentrations. The width of disordered window decreases with increasing length of the POSS alkyl chain substituent from ethyl to isobutyl and is absent in the isooctyl sample. Rheological measurements demonstrate good mechanical rigidity when compared with similar all-organic block copolymers. While salt diffusion coefficient and current ratio are unaffected by substituent length, ionic conductivity increases as the length of the alkyl chain substituent decreases: the ethyl substituent is optimal for ion transport. This is surprising because conventional wisdom suggests that ion transport occurs primarily in the PEO-rich domains, that is, ion transport should be unaffected by substituent length after accounting for the minor change in conducting phase volume fraction. © 2020 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2020 © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 363–371  相似文献   
66.
To reduce the crystallization rate of polyoxymethylene (POM) to meet the requirement of thick-walled and large-sized articles production, and maintain high crystallinity as well as obtain refined crystalline grains to ensure the strength and stiffness simultaneously, thermoplastic phenolic resin (PF) and multiwalled carbon nanotubes (MWCNTs) were used as crystal growth inhibitor and nucleating agent, respectively, and their effects on the crystallization of POM were studied in details. The results showed that PF is an effective inhibitor and MWCNTs exhibits excellent nucleation effect on POM. Based on the obtained results, their synergistic influences on the crystallization process of POM were investigated. It is found that the objective of decreasing the crystallization rate while maintaining high crystallinity and forming fine crystalline grains can be realized. The 97/3/1 wt% POM/PF/MWCNTs, compared with those of neat POM, The T c shifts by 3.3°C to a lower temperature, the crystallization enthalpy increases by 16.1 J/g and the full width at half-maximum widens by 48.5%. The modulation effect of PF and MWCNTs on the crystallization is closely related to the PF content and dispersion, the distribution and dispersion of MWCNTs in the PF and POM phases.  相似文献   
67.
Cationic compounds often serve as antibacterial materials for a wide range of applications. However, the relationship of topology−antibacterial activity has been rarely revealed. Herein, three cationic polythioethers (CPTEs) with hyperbranched topologies are well designed and facilely synthesized via an all-click chemistry strategy (including thiol-ene and epoxy-amine additions). These as-prepared CPTEs were found to exhibited outstanding antibacterial activity against Escherichia coli and Staphylococcus aureus with minimum inhibitory concentrations against E. coli of 7.3, 14.6, and 14.6 μg ml−1, and against S. aureus of 14.6, 29.2, and 29.2 μg ml−1, respectively. The antibacterial activity is coincident with their degree of branching (DB, their DB values of 0.81, 0.48, and 0.27), which is mainly attributed to the inherent three-dimensional structure. The present strategy reveals the relationship of polymer topology and antibacterial activity, providing a novel possibility for designing and/or synthesis of high-efficiency antibacterial agents.  相似文献   
68.
Spin–orbit charge-transfer intersystem crossing (SOCT-ISC) is useful for the preparation of heavy atom-free triplet photosensitisers (PSs). Herein, a series of perylene-Bodipy compact electron donor/acceptor dyads showing efficient SOCT-ISC is prepared. The photophysical properties of the dyads were studied with steady-state and time-resolved spectroscopies. Efficient triplet state formation (quantum yield ΦT=60 %) was observed, with a triplet state lifetime (τT=436 μs) much longer than that accessed with the conventional heavy atom effect (τT=62 μs). The SOCT-ISC mechanism was unambiguously confirmed by direct excitation of the charge transfer (CT) absorption band by using nanosecond transient absorption spectroscopy and time-resolved electron paramagnetic resonance (TREPR) spectroscopy. The factors affecting the SOCT-ISC efficiency include the geometry, the potential energy surface of the torsion, the spin density for the atoms of the linker, solvent polarity, and the energy matching of the 1CT/3LE states. Remarkably, these heavy atom-free triplet PSs were demonstrated as a new type of efficient photodynamic therapy (PDT) reagents (phototoxicity, EC50=75 nm ), with a negligible dark toxicity (EC50=78.1 μm ) compared with the conventional heavy atom PSs (dark toxicity, EC50=6.0 μm, light toxicity, EC50=4.0 nm ). This study provides in-depth understanding of the SOCT-ISC, unveils the design principles of triplet PSs based on SOCT-ISC, and underlines their application as a new generation of potent PDT reagents.  相似文献   
69.
Novel lithium–lanthanide (Ln: cerium and praseodymium) bimetallic coordination polymers with formulas C10H2LnLiO8 (Ln: Ce (CeLipma) and Pr (PrLipma)) and C10H3CeO8 (Cepma) were prepared through a simple hydrothermal method. The three compounds were characterized by means of FTIR spectroscopy, X-ray diffraction, single-crystal X-ray diffraction, SEM, TEM, and X-ray photoelectron spectroscopy. The results of structural refinement show that they belong to triclinic symmetry and P space group with cerium (or praseodymium) and lithium cations, forming coordination bonds to oxygen atoms from different pyromellitic acid molecules, and leading to the construction of 3D structures. It is interesting to note that the frameworks exclude any coordination water and lattice water. As an electrode material for lithium-ion batteries, CeLipma exhibits a maximum capacity of 800.5 mAh g−1 and a retention of 91.4 % after 50 cycles at a current density of 100 mA g−1. The favorable electrochemical properties of the lanthanide coordination polymers show potential application prospects in the field of electrode materials.  相似文献   
70.
As a hot topic of global concern, the distinguishing and detecting of antibiotic pollution is crucial owing to its adverse effect on ecosystems and human health stemming from excessive use and poor management. Herein, a water-stable lanthanide coordination polymer sensor (Dy-TCPB) with multiple emitting centers is prepared. The versatile Dy-TCPB can conveniently differentiate various antibiotics, and displays a self-calibration luminescent response to nitrofurazone (NFZ) and furazolidone (FZD). Each antibiotic exhibits notable correlation to a unique combination of the two ligand-to-Dy ion emission intensity ratios, enabling two-dimensional fingerprint recognition. Furthermore, the novel self-calibration sensor demonstrates effective recognition of NFZ and FZD with excellent sensitivity and selectivity, and detection limits as low as 0.0476 and 0.0482 μm for NFZ and FZD, respectively. The synthetic approach for the fabrication of a singular coordination polymer exhibiting multiple emissions provides a promising strategy for the development of facile and effective ratiometric sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号